181 research outputs found

    Pediatric Neurology Briefs: Year in Review

    Get PDF
    In 2018, the mission of Pediatric Neurology Briefs (PNB) remains the same: “PNB is a continuing education service designed to expedite and facilitate the review of current scientific research and advances in child neurology and related subjects.

    Pediatric Neurology Briefs: Year in Review

    Get PDF
    Pediatric Neurology Briefs (PNB) has been published monthly since 1987 as a continuing education service designed to expedite and facilitate review of current medical literature concerning pediatric neurology

    Spinal Cord Infarction with Multiple Etiologic Factors

    Get PDF
    Spinal cord infarction is uncommon and usually presents with sudden onset of paralysis and sensory disturbances. A variety of causes are described, but rarely with multiple factors involved. We report a case of a 63-year-old man with a history of diabetes mellitus, hypertension, and osteoarthritis who presented with acute onset of chest pain, numbness, and weakness associated with episodic hypotension. He had incomplete tetraplegia and was areflexic without spasticity. Pain and temperature sensations were impaired below the C7 dermatome and absent below the T4 dermatome bilaterally. Proprioception and vibration sensations were diminished on the right below the C6 dermatome. Magnetic resonance imaging showed spinal cord infarction affecting C6–T3 segments, and severe cervical and lumbar spine degenerative changes. This case illustrates an unusual presenting symptom of spinal infarction, the need to identify multiple risk factors for spinal cord infarction, and the importance of optimal preventive therapy in patients at risk

    Phenotypic spectrum and transcriptomic profile associated with germline variants in TRAF7

    Get PDF
    Purpose: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. Methods: We performed exwct ome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. Results: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. Conclusion: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies

    Phenotypic spectrum and transcriptomic profile associated with germline variants in TRAF7

    Get PDF
    PURPOSE: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. METHODS: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. RESULTS: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. CONCLUSION: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies

    Highlights From the Annual Meeting of the American Epilepsy Society 2022

    Get PDF
    With more than 6000 attendees between in-person and virtual offerings, the American Epilepsy Society Meeting 2022 in Nashville, felt as busy as in prepandemic times. An ever-growing number of physicians, scientists, and allied health professionals gathered to learn a variety of topics about epilepsy. The program was carefully tailored to meet the needs of professionals with different interests and career stages. This article summarizes the different symposia presented at the meeting. Basic science lectures addressed the primary elements of seizure generation and pathophysiology of epilepsy in different disease states. Scientists congregated to learn about anti-seizure medications, mechanisms of action, and new tools to treat epilepsy including surgery and neurostimulation. Some symposia were also dedicated to discuss epilepsy comorbidities and practical issues regarding epilepsy care. An increasing number of patient advocates discussing their stories were intertwined within scientific activities. Many smaller group sessions targeted more specific topics to encourage member participation, including Special Interest Groups, Investigator, and Skills Workshops. Special lectures included the renown Hoyer and Lombroso, an ILAE/IBE joint session, a spotlight on the impact of Dobbs v. Jackson on reproductive health in epilepsy, and a joint session with the NAEC on coding and reimbursement policies. The hot topics symposium was focused on traumatic brain injury and post-traumatic epilepsy. A balanced collaboration with the industry allowed presentations of the latest pharmaceutical and engineering advances in satellite symposia

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Differential Diagnosis of Lennox-Gastaut Syndrome

    No full text
    Epileptologists from Children's Hospital, Boston, and UCLA, California, discuss approaches to the differential diagnosis of Lennox Gastaut syndrome (LGS) and identification of a possible underlying etiology

    Diagnostic Criteria for ADHD: Impact of the DSM-5 Criteria on Prevalence of ADHD

    No full text
    Investigators at the National Institute of Mental Health, Bethesda, MD, compared the prevalence and clinical correlates of DSM-IV-TR versus DSM-5-defined ADHD and subtypes in a nationally representative sample of US youth based on age-of-onset criterion
    • 

    corecore